CHAPTER |

BASIC CONCEPTS

1.1 OVERVIEW: SYSTEM LIFE CYCLE

We assume that our readers have a strong background in structured programming, typi-
cally attained through the completion of an elementary programming course. Such an
initial course uswally emphasizes mastering a programming language’s syntax (its gram-
mar rules) and applying this language to the solution of several relatively small prob-
lems. These problems are frequently chosen so that they use a particular language con-
struct. For example, the programming problem might require the use of arrays or while
loops.

In this text we want to move you beyond these rudiments by providing you with
the tools and techniques necessary to design and implement large-scale computer sys-
tems. We believe that a solid foundation in data abstraction, algorithm specification, and
performance analysis and measurement provides the necessary methodology. In this
chapter, we will discuss each of these areas in detail. We also will briefly discuss recur-
sive programming because many of you probably have only a fleeting acquaintance with
this important technique. However, before we begin we want to place these tools in a
context that views programming as more than writing code. Good programmers regard

large-scale computer programs as systems that contain many complex interacting parts.
As systems, these programs undergo a development process called the system life cycle.
We consider this cycle as consisting of requirements, analysis, design, coding, and
verification phases. Although we will consider them separately, these phases are highly
interrelated and follow only a very crude sequential time frame. The Selected Readings
and References section lists several sources on the system life cycle and its various
phases that will provide you with additional information.

(1) Requirements. All large programming projects begin with a set of specifications
that define the purpose of the project. These requirements describe the information that
we, the programmers, are given (input) and the results that we must produce (output).
Frequently the initial specifications are defined vaguely, and we must develop rigorous
input and output descriptions that include all cases.

(2) Analysis. After we have delineated carefully the system’s requirements, the analysis
phase begins in earnest. In this phase, we begin to break the problem down into manage-
able pieces. There are two approaches to analysis: bottom-up and top-down. The
bottom-up approach is an older, unstructured strategy that places an early emphasis on
the coding fine points, Since the programmer does not have a master plan for the project,
the resulting program frequently has many loosely connected, error-ridden segments.
Bottom-up analysis is akin to constructing a building from a generic blueprint. That is,
we view all buildings identically; they must have walls, a roof, plumbing, and heating.
The specific purpose to which the building will be put is irrelevant from this perspective.
Although few of us would want to live in a home constructed using this technique, many
programmers, particularly beginning ones, believe that they can create good, error-free
programs without prior planning.

In contrast, the top-down approach begins with the purpose that the program will
serve and uses this end product to divide the program into manageable segments. This
technique generates diagrams that are used to design the system. Frequently, several
alternate solutions to the programming problem are developed and compared during this
phase.

{(3) Design. This phase continues the work done in the analysis phase. The designer
approaches the system from the perspectives of both the data objects that the program
needs and the operations performed on them. The first perspective leads to the creation
of abstract data types, while the second requires the specification of algorithms and a
consideration of algorithm design strategies. For example, suppose that we are design-
ing a scheduling system for a university. Typical data objects might include students,
courses, and professors. Typical operations might include inserting, removing, and
searching within each object or between them. That is, we might want to add a course to
the list of university courses, or search for the courses taught by some professor.

Since the abstract data types and the algorithm specifications are language-

Overview 3

independent, we postpone implementation decisions. Although we must specify the
information required for each data object, we ignore coding details. For example, we
might decide that the student data object should include name, social security number,
major, and phone number. However, we would not yet pick a specific implementation
for the list of students. As we will see in later chapters, there are several possibilities
including arrays, linked lists, or trees. By deferring implementation issues as long as
possible, we not only create a system that could be written in several programming
languages, but we also have time to pick the most efficient implementations within our
chosen language.

(4) Refinement and coding. In this phase, we choose representations for our data
objects and write algorithms for each operation on them. The order in which we do this
is crucial because a data object’s representation can determine the efficiency of the algo-
rithms related to it. Typically this means that we should write those algorithms that are
independent of the data objects first. :

Frequently at this point we realize that we could have created a much better sys-
tem. Perhaps we have spoken with a friend who has worked on a similar project, or we
realize that one of our alternate designs is superior. If our original design is good, it can
absorb changes easily. In fact, this is a reason for avoiding an early commitment to cod-
ing details. If we must scrap our work entirely, we can take comfort in the fact that we
will be able to write the new system more quickly and with fewer errors.

(5) Verification. This phase consists of developing correctness proofs for the program,
testing the program with a variety of input data, and removing errors. Each of these
areas has been researched extensively, and a complete discussion is beyond the scope
of this text. However, we want to summarize briefly the important aspects of each area.

Correctness proofs: Programs can be proven correct using the same techniques that
abound in mathematics. Unfortunately, these proofs are very time-consuming, and
difficult to develop for large projects. Frequently scheduling constraints prevent the
development of a complete set of proofs for a large system. However, selecting algo-
rithms that have been proven correct can reduce the number of errors. In this text, we
will provide you with an arsenal of algorithms, some of which have been proven correct
using formal techniques, that you may apply to many programming problems.

Testing: We can construct our correctness proofs before and during the coding phase
since our algorithms need not be written in a specific programming language. Testing,
however, requires the working code and sets of test data. This data should be developed
carefully so that it includes all possible scenarios. Frequently beginning programmers
assume that if their program ran without producing a syntax error, it must be correct.
Little thought is given to the input data, and usually only one set of data is used. Good
test data should verify that every piece of code runs correctly. For example, if our

program contains a switch statement, our test data should be chosen so that we can
check each case within the switch statement.

Initial system tests focus on verifying that 2 program runs correctly. While this is
a crucial concern, a program’s running time is also important. An error-free program that
runs slowly is of little value. Theoretical estimates of running time exist for many algo-
rithms and we will derive these estimates as we introduce new algorithms. In addition,
we may want to gather performance estimates for portions of our code. Constructing
these timing tests is also a topic that we pursue later in this chapter.

Error removal. If done properly, the correctness proofs and system tests will indicate
erroneous code. The ease with which we can remove these errors depends on the design
and coding decisions- made earlier. A large uwndocumented program written in
"spaghetti” code is a programmer’s nightmare. When debugging such programs, each
corrected error possibly generates several new errors. On the other hand, debugging a
well-documented program that is divided into autonomous units that interact through
parameters is far easier. This is especially true if each unit is tested separately and then
integrated into the system.

1.2 POINTERS AND DYNAMIC MEMORY ALLOCATION

1.2.1 Pointers

Pointers are fundamental to C and C provides extensive support for them. Actually, for
any type T in C there is a corresponding type pointer-to-7. The actual value of a pointer
type is an address of memory. The two most impprtant operators used with the pointer

" type are:

. & the address operator
. * the dereferencing (or indirection) operator

If we have the declaration:
int i, *pi;

then i is an integer variable and pi is a pointer to an integer. If we say:
pi = &i;

then &i returns the address of / and assigns it as the value of pi. To assign a value to | we
can say:

Pointers and Dynamic Memory Allocation 5

i=10;
or
*pl = 10;

In both cases the integer 10 is stored as the value of i. In the second case, the * in front
of the pointer pi causes it to be dereferenced, by which we mean that instead of storing
10 into the pointer, 10 is stored into the location pointed at by the pointer pi.

There are other operations we can do on pointers. We may assign a pointer to a
variable of type pointer. Since a pointer is just a nonnegative integer number, C allows
us to perform arithmetic operations such as addition, subtraction, multiplication, and
division, on pointers. We also can determine if one pointer is greater than, less than, or
equal to another, and we can convert pointers explicitly to integers.

The size of a pointer can be different on different computers. In some cases the
size of a pointer on a computer can vary. For example, the size of a pointer to a char can
be longer than a pointer to a float. C has a special value that it treats as a null pointer.
The null pointer points to no object or function. Typically the null pointer is represented
by the integer 0. The C macro NULL is defined to be this constant. The null pointer can
be used in relational expressions, where it is interpreted as false. Therefore, to test for
the null pointer in C we can say:

if (pi == NULL)
or more simply:
if (!pi)

1.2.2 Dynamic Memory Allocation

In your program you may wish to acquire space in which you will store information.
When you write your program you may not know how much space you will need (for
example, the size of an array may depend on an input to the program), nor do you wish to
allocate some very large area that may never be required. To solve this problem C pro-
vides a mechanism, called a heap, for allocating storage at run-time. Whenever you
need a new area of memory, you may call a function, malloc, and request the amount you
need. If the memory is available, a pointer to the start of an area of memory of the
required size is returned. When the requested memory is not available, the pointer
NULL is returned. At a later time when you no longer need an area of memory, you may
free it by calling another function, free, and return the area of memory to the system.
Once an area of memory is freed, it is improper to use it. Program 1.1 shows how we
might allocate and deallocate storage to pointer variables, .
The call to malloc includes a parameter that determines the size of storage
required to hold the int or the float. The result is a pointer to the first byte of a storage
area of the proper size. The type of the result can vary. On some systems the result of
malloc is a char *, a pointer to a char. However, those who use ANSI C will find that

int i, *pi;
float £, *pf;

pi = (int *) malloc(sizecf(int});

pf = (float *) malloc(sizeof (float)};

*pi = 1024;

*pf = 3.14;

printf{"an integer = %d, a float = %f\n", *pi, *pf);
free(pi);

free(pf);

Program 1.1: Allocation and deallocation of memory

the result is void *. The notation (int *) and (float *) are type cast expressions, which
may be omitted in Program 1.1. They transform the resulting pointer into a pointer to the
correct type. The pointer is then assigned to the proper pointer variable. The free func-
tion deallocates an area of memory previously allocated by malloc. In some versions of
C, free expects an argumemnd that is a char *, while ANSI C expects void *. However,
the casting of the argument is generally omitted in the call to free.

Since there is the possibilty that a call to malloc may fail for lack of sufficient
memory, we can write a more robust version of Program Program 1.1 by replacing the
lines of code that invoke malioc by the code

if ({pi {int *) mallecc(sizecf{int)}) == NULL ||
{pf (float *) malloc(sizeof(float))) == NULL)

{fprintf (stderr, "Insufficient memory");

exit (EXIT_FAILURE) ;

}

i

or by the equivalent code

1f (! (pi malloc(sizeof(int)}) ||

'pf malloc(sizeof (float))})
{fprintf{stderr, "Insufficient memory");
exit (EXIT_FAILURE) ;
1

Since malloc may be invoked from several places in your program, it is often con-
venient to define a macro that invokes malloc and exits when malloc fails. A possible
macro definition is:

Pointers and Dynamic Memory Allocation 7

#define MALLOC{p,s) \
if (1((p) = mallocis))) {\
fprintf (stderr, "Insufficient memory"); \
ex1t (EXIT_FAILURE) ;\

Now, the two lines of Program 1.1 that invoke malioc may be replaced by the code

MALLOC (pi, sizecf(int)};
MALLOC (pf, sizeof(float));

In Program 1.1 if we insert the line:
pf = (flcat *) malloc{sizeof(float));

immediately after the prinif statement, then the pointer to the storage used to hold the
value 3.14 has disappeared. Now there is no way to retrieve this storage. This is an
example of a dangling reference. Whenever all pointers to a dynamically allocated area
of storage are lost, the storage is lost to the program. As we examine programs that
make use of pointers and dynamic storage, we will make it a point to always retumn
storage after we no longer need it.

1.23 Pointers Can Be Dangerous

When programming in C, it is a wise practice to set all pointers to NULL when they are
not actually pointing to an object. This makes it less likely that you will attempt to
access an area of memory that is either out of range of your program or that does not
contain a pointer reference to a legitimate object. On some computers, it is possible to
dereference the null pointer and the result is NULL, permitting execution to continue.
On other computers, the result is whatever the bits are in location zero, ofien producing a
serious error.

.. Another wise programming tactic is to use explicit type casts when converting
between pointer types. For example:

pli = malloc(sizeof{int)};
/* assign to pi a peinter to int */
pft = (flcat *) pi;

/* casts an int pointer to a float pocinter */

Another area of concern is that in many systems, pointers have the same size as
type int. Since int is the default type specifter, some programmers omit the return type
when defining a function. The return type defaults to int which can later be interpreted

as a pointer. This has proven to be a dangerous practice on some computers and the pro-
grammer is urged to define explicit return types for functions.

1.3 ALGORITHM SPECIFICATION

1.3.1 fntroduction

The concept of an algorithm is fundamental to computer science. Algorithms exist for
many common problems, and designing efficient algorithms plays a crucial role in
developing large-scale computer systems. Therefore, before we proceed further we need
to discuss this concept more fuily. We begin with a definition.

Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a
particudar task. In addition, all algorithms must satisfy the following criteria:

(1) Imput. There are zero or more quantities that are externalty supplied.
(2) Output. At least one guantity is produced.
(3) Definiteness. Each instruction is clear and unambiguous.

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps,

(5) Effectiveness. Every instruction must be basic enough to be carried out, in princi-
ple, by a person using only pencil and paper. It is not enough that each operation
be definite as in (3); it also must be feasible. O

In computational theory, one distinguishes between an algorithm and a program, the
latter of which does not have to satisfy the fourth condition. For example, we can think
of an operating system that continues in a wair loop until more jobs are entered. Such a
program does not terminate unless the system crashes, Since our programs will always
terminate, we will use algorithm and program interchangeably in this text.

We can describe an algorithm in many ways. We can use a natural language like
English, although, if we select this option, we must make sure that the resulting instruc-
tions are definite. Graphic representations called flowcharts are another possibility, but
they work well only if the algorithm is small and simple. In this text we will present
most of our algorithms in C, occasionally resorting to a combination of English and C for
our specifications. Two examples should help to illustrate the process of translating a
problem into an algorithm.

Algorithm Specification 9

Example 1.1 [Selection sort]: Suppose we must devise a program that sorts a set of
n 2 1 integers. A simple solution is given by the following:

From those integers that are currently unsorted, find the smallest and place it next
in the sorted list.

Although this statement adequately describes the sorting problemn, it is not an algo-
rithm since it leaves several unanswered questions. For example, it does not tell us
where and how the integers are initially stored, or where we should place the result. We
assume that the integers are stored in an array, /s, such that the ith integer is stored in
the ith position, fist[i], 0<i < n. Program 1.2 is our first attempt at deriving a solution.
Notice that it is written partially in C and partially in English,

for (i = 0; 1 < n; i++) {
Examine list{i] to list[n-1} and suppose that the
smallest integer is at listimin];

Interchange list[i] and list[min];
}

Program 1.2: Selection sort algorithm

To tun Program 1.2 into a real C program, two clearly defined subtasks remain: finding
the smallest integer and interchanging it with list [/]. We can solve the latter problem
using either a function (Program 1.3) or a macro.

volid swap(int *x, int *y)

{/* both parameters are pointers to ints */
int temp = *x; /* declares temp as an int and assigns

to it the contents of what X points to */
*x = *y; /* stores what y points to intc the location
where x points */
temp; /* places the contents of temp in location
pointed to by y */

*y

Program 1.3: Swap function

Using the function, suppose a and b are declared as ints. To swap their values one would

say:
swap (&a, &b);
passing to swap the addresses of @ and 5. The macro version of swap is:
#define SWAP(x,y,t) ((t) = (x}, (%) = (y), (y} = (t))}

The function’s code is easier to read than that of the macro but the macro works with any
data type.

We can solve the first subtask by assuming that the minimum is list[i], checking
list [i] with list [i +17, list[i +2], --- , list[n—1]. Whenever we find a smaller number
we make it the new minimum. When we reach list [n—1] we are finished. Putting all
these observations together gives us sort (Program 1.4). Program 1.4 contains a com-
plete program which you may run on your computer. The program uses the rand func-
tion defined in math.h 10 randomly generate a list of numbers which are then passed into
sort. At this point, we should ask if this function works correctly.

Theorem 1.1: Function sort(list,n} correctly sorts a set of n =1 integers. The result
remains in list [0], - - - , list [n—1] such that list [0] € list [1] £ - - - <list[n—1].

Proof: When the outer for loop completes its iteration for i = ¢, we have list[g] £
list [r], g < r < n. Further, on subsequent iterations, i > ¢ and list (0} through list [q] are
unchanged. Hence following the last iteration of the outer for loop (i.e., i= n—2), we
have list (0} < list {11 € -+ - <list[n—-1]. 0

Example 1.2 [Binary search]: Assume that we have n 21 distinct integers that are
already sorted and stored in the array /ist. That is, list [0] <list [1]< - - - <list[n—1]. We
must figure out if an integer searchnum is in this list. If it is we should return an index, i,
such that list[i] = searchnum. If searchnum is not present, we should return ~1. Since
the list is sorted we may use the following method to search for the value.

Let left and right, respectively, denote the left and right ends of the list to be
searched. Initially, feft = O and right = n—1. Let middle = (left+right 2 be the middle
position in the list. If we compare fist [middle | with searchnum, we obtain one of three
results:

(1) searchnum < list{middle]. In this case, if searchnum is present, it must be in the
positions between 0 and middle — 1. Therefore, we set right to middle — 1.

(2) searchnum = list{middle]. In this case, we return middle.

(3) searchnum > list{middle]. In this case, if searchnum is present, it must be in the
positions between middle + 1 and n — 1. So, we set left to middle + 1.

Algorithm Specification 11

#include <stdic.h>
#include <math.h>
#define MAX_SIZE 101
fidefine SWAP(x,y,t) ((t) = {(x), (x}= (y), (y) = (t})
void sort{int [],int); /*selection sort */
void main{void)
{
int i,n;
int list[MAX_SIZE];
printf {"Enter the number of numbers to generate: "};
scanf ("%d", &n);
ifin <11t n> MAX-SIZE) {
fprintf {stderr, "Improper value of n\n");
exit (EXIT_FAILURE);
}

for (i = 0; 1 < n; i++) {/*randomly generate numbers*/
list[i} = rand() % 1000;
printf{("%d ", list[i]);
}
sort(list,n);
printf("\n Sorted array:\n ");
for (i = 0; 1 < n; i++) /* print out sorted numbers */
printf("%$d ",list[il};
printf ("\n");
}
void sort(int list[],int n)
{

int i, j, min, temp;

for (i = 0; 1 < n~1; i++} {
min = 1i;
for (j = i+1; J < n; j++)
if (list[j] < list([min]}
min = j;

SWAP(listi{il, list[min],temp);

}

Program 1.4: Selection sort

If searchnum has not been found and there are still integers to check, we recalculate
middle and continue the search. Program 1.5 implements this searching strategy. The
algorithm contains two subtasks: (1) determining if there are any integers left to check,
and (2) comparing searchnum to list{middie].

while ({there are more integers to check } |
middle = (left + right) / 2;
if {searchnum < list[middle}])
right = middle - 1;
else if (searchnum == list[middle])
return middle;
else left = middle + 1;
}

Program 1.5: Searching a sorted list

We can handle the comparisons through either a function or a macro. In either
case, we must specify values to signify less than, equal, or greater than. We will use the
strategy followed in C’s library functions:

. We return a negative number (—1} if the first number is less than the second.
. We return a O if the two numbers are equal.
. We return a positive number (1) if the first number is greater than the second.

Although we present both a function (Program 1.6) and a macro, we will use the macro
throughout the text since it works with any data type.

int cecmpare{int x, int y)
{/* compare x and y, return -1 for less than, 0 for equal,
1 for greater */
if (x < y} return -1;
else if (x == y} return 0;
else return 1;
}

Program 1.6: Comparison of two integers

The macro version is:

#define COMPARE(x,vy) {((x) < (y)}y ? -1: ((x) =

(yy)? 0: 1)

Algorithm Specification 13

We are now ready to tackle the first subtask: determining if there are any elements
left to check. You will recall that our initial algorithm indicated that a comparison could
cause us to move either our left or right index. Assuming we keep moving these indices,
we will eventnally find the element, or the indices will cross, that is, the left index will
have a higher value than the right index. Since these indices delineate the search boun-
daries, once they cross, we have nothing left to check. Putting all this information
together gives us binsearch (Program 1.7).

int binsearch(int list[], int searchnum, int left,
int right)
{/* search 1ist[0] <= list[1l} <= - - -« <= list[n-1} for
searchnum. Return its position if found. Otherwise
return -1 */
int middle;
while (left <= right) {
middle = (left + right)/2;
switch (COMPARE (list{middle], searchnum)) {
case —1: left = middle + 1;
break;
case (0 : return middle;
case 1 : right = middle — 1;

1
return ~1;

}

Program 1.7: Searching an ordered list

The search strategy just outlined is called binary search. [

The previous examples have shown that algorithms are implemented as functions
in C. Indeed functions are the primary vehicle used to divide a large program into
manageable pieces. They make the program easier to read, and, because the functions
can be tested separately, increase the probability that it will run correctly, Often we will
declare a function first and provide its definition later. In this way the compiler is made
aware that a name refers to a legal function that will be defined later. In C, groups of
functions can be compiled separately, thereby establishing libraries containing groups of
logically related algorithms.

1.3.2 Recursive Algorithms

Typically, beginning programmers view a function as something that is invoked (called)
by another function. It executes its code and then returns control to the calling function.
This perspective ignores the fact that functions can call themselves (direct recursion) or
they may call other functions that invoke the calling function again (indirect recursion).
These recursive mechanisms are not only extremely powerful, but they also frequently
aliow us to express an otherwise complex process in very clear terms. It is for these rea-
sons that we introduce recursion here.

Frequently computer science students regard recursion as a mystical technique that
is useful for only a few special problems such as computing factorials or Ackermann’s
function. This is unfortunate because any function that we can write using assignment,
if-else, and while statements can be written recursively. Often this recursive function is
easier to understand than its iterative counterpart.

How do we determine when we should express an algorithm recursively? One
instance is when the problem itself is defined recursively. Factorials and Fibonacci
numbers fit into this category as do binomial coeflicients where:

["?] - m!(nnim)!

can be recursively computed by the formula:

)=)+

We would like to use two examples to show you how to develop a recursive algo-
rithm. In the first example, we take the binary search function that we created in Exam-
ple 1.2 and transform it into a recursive function. In the second example, we recursively
generate all possible permutations of a list of characters.

Example 1.3 [Binary search]: Program 1.7 gave the iterative version of a binary search.
To transform this function into a recursive one, we must (1) establish boundary condi-
tions that terminate the recursive calls, and (2) implement the recursive calls so that each
call brings us one step closer o a solution. If we examine Program 1.7 carefully we can
see that there are two ways to terminate the search: one signaling a success (list[middle]
= searchnum), the other signaling a failure (the left and right indices cross}. We do not
need to change the code when the function terminates successfully. However, the while
statement that is used to trigger the unsuccessful search needs to be replaced with an
equivalent if statement whose then clause invokes the function recursively.

Creating recursive calls that move us closer to a solution is also simple since it
requires only passing the new left or right index as a parameter in the next recursive call.
Program 1.8 implements the recursive binary search. Notice that although the code has
changed, the recursive function call is identical to that of the iterative function. U

Algorithm Speciﬁcatibn 15

int binsearch(int list[], int searchnum, int left,

int right)

{/* search list[0] <= list[l] <= ... <= list[n-1] for
searchnum. Return its position if found. Otherwise
return -1 */
int middle;
if {(left <= right) {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)):{
case -1: return '
binsearch(list, searchnum, middle + 1, right};
case 0 : return middle;
case 1 : return
binsearch{list, searchnum, left, middle - 1);

}

return -1;

}

Program 1.8: Recursive implementation of binary search

Example 1.4 [Permutations]: Given a set of n 2 | elements, print out all possible permu-
tations of this set. For example, if the set is {a, b, ¢}, then the set of permutations is {(a,
b, ¢), (a, c, b), (b, a, ¢), (b, ¢,), (c, a, b), (c, b, @}}. Ttis easy to see that, given n ele-
ments, there are n! permutations. We can obtain a simple algorithm for generating the
permutations if we look at the set {a, b, ¢, d}. We can construct the set of permutations
by printing:

(1) afollowed by all permutations of (b, ¢, d)

(2) b followed by all permutations of (a, c,)

(3) cfollowed by all permutations of (a, b, d)

(4) dfollowed by all permutations of (a, b, ¢)

The clue to the recursive solution is the phrase "followed by all permutations." It implies
that we can solve the problem for a set with n elements if we have an algorithm that
works on 7 — | elements. These considerations lead to the development of Program 1.9.
We assume that list is a character array. Notice that it recursively generates permuta-
tions until { = n. The initial function cail is perm (list, 0,7~ 1).

Try to simulate Program 1.9 on the three-element set {a, b, c}. Each recursive call

void perm{char *1list, int i, int n)
{/* generate all the permutations of list[i] to list[n] */
int j, temp;
if (i == n} |
for {(j = 0; 3 <= n; Jj++}
printf{"%c", list[j]);
printf (" "y,
}
else |
/* list[i} to list{n] has more than one permutation,
generate these recursively */
for (j = 1i; J <= n; J++) {
SWAP {list[i]),1list{j], temp);
perm({list,i+l,n);
SWaP (list([i},list[]j],temp);

}

Program 1.9: Recursive permutation generator

of perm produces new local copies of the parameters list, i, and n. The value of i will
differ from invocation to invocation, but n will not. The parameter /ist is an array pointer
and its value also will not vary from call to call. O

We will encounter recursion several more times since many of the algorithms that
appear in subsequent chapters are recursively defined. This is particularly true of algo-
rithms that operate on lists (Chapter 4) and binary trees (Chapter 5).

EXERCISES

In the last several examples, we showed you how to translate a problem into a program.
We have avoided the issues of data abstraction and algorithm design strategies, choosing
to focus on developing a function from an English description, or transforming an itera-
tive algorithm into a recursive one. In the exercises that follow, we want you to use the
same approach, For each programming problem, try to develop an algorithm, translate it
into a function, and show that it works correctly. Your correctness "proof™ can employ
an analysis of the algorithm or a suitable set of test runs.

1. Consider the two statements:

(a) Isn=2the largest value of » for which there exist positive integers x, y, and
z such that x” + y” = z" has a solution?

10.

11

Algorithm Specification 17

(b) Store 5 divided by zero into x and go to statement 10,

Both fail to satisfy one of the five criteria of an algorithm. Which criterion do they
violate?

Horner’s rule is a strategy for evaluating a polynomial A (x) =

1

Apx" +a, X"+ o ta) +ay

at point x using a minimum number of multiplications. This rule is:
Alxo)=(- (lagxo +ay-)) 1o+ - +a)) xp +ag)

Write a C program to evaluate a polynomial using Horner's rule.

Given n Boolean variables x,, - , x, , we wish to print all possible combinations
of truth values they can assume. For instance, if n = 2, there are four possibilities:
<irue, true>, <false, true>, <true, false>, and <false, false> Write a C program to
do this,

Write a C program that prints out the integer values of x, y, z in ascending order.

The pigeon hole principle states that if a function f has » distinct inputs but less
than r distinct outputs then there are two inputs a and b such that a # b and f (a) =
f (). Write a C program to find the values a and b for which the range values are
equal. C

Given n, a positive integer, determine if n is the sum its divisors, that is, if # is. the
sum of all ¢ such that 1 £ ¢ < and ¢ divides »n.

The factorial function # ! has value | when n < 1 and value n#(n—1)! whenn > 1.
Write both a recursive and an iterative C function to compute 7 !.

The Fibonacci numbers are defined as: f3, =0, f| = 1, and f; = f;. | +fi_, for i > 1.
Write both a recursive and an iterative C function to compute f;.

Write an iterative function to compute a binomial coefficient, then transform it into
an equivalent recursive function.
Ackerman’s function A (m, n) is defined as:

n+1 ,ifm =0

A(m,n)={A(m-1,1) ,ifn=0

A(m—1,A(n, n— 1)), otherwise
This function is studied because it grows very quickly for small values of m and n.
Write recursive and iterative versions of this function.

[Towers of Hanoi] There are three towers and 64 disks of different diameters
placed on the first tower. The disks are in order of decreasing diameter as one
scans up the tower. Monks were reputedly supposed to move the disk from tower

I to tower 3 obeying the rules:
(a) Only one disk can be moved at any time.

(b) No disk can be placed on top of a disk with a smaller diameter.
Write a recursive function that prints out the sequence of moves needed to accom-
plish this task.

12. If Sis a set of n elements the power set of § is the set of all possible subsets of S.
For example, if § = {a, b, c}, then powerset ($) = { {}, {a}, {b}, {c}. {a, b}, {a, ¢},
{b, c}, la, b, c}}. Write a recursive function to compute powerset(S).

1.4 DATA ABSTRACTION

The reader is no doubt familiar with the basic data types of C. These include char, int,
float, and double. Some of these data types may be modified by the keywords short,
long, and unsigned. Ultimately, the real world abstractions we wish to deal with must
be represented in terms of these data types. In addition to these basic types, C helps us
by providing two mechanisms for grouping data together. These are the array and the
structure. Arrays are collections of elements of the same basic data type. They are
declared implicitly, for example, int list{5] defines a five-clement array of integers whose
legitimate subscripts are in the range O - - - 4. Structs are collections of elements whase
data types need not be the same. They are explicitly defined. For example,

struct {
char lastName;
int studentld;
char grade;
} student;

defines a structure with three fields, two of type character and one of type integer. The
structure name is student. Details of C structures are provided in Chapter 2.

All programming languages provide at least a minimal set of predefined data
types, plus the ability to construct new, or user-defined types. It is appropriate to ask the
question, "What is a data type?"

Definition: A dara rype is a collection of objects and a set of operations that act on those
objects. [

Whether your program is dealing with predefined data types or user-defined data types,
these two aspects must be considered: objects and operatious. For example, the data
type int consists of the objects {0, +1, -1, 42, -2, - -+ . INT-MAX, INT..MIN}, where
INT-MAX and INT_MIN are the largest and smallest integers that can be represented
on your machine. (They are defined in limits.h.) The operations on integers are many,

Data Abstraction 19

and would certainly include the arithmetic operators +, —, *, /, and %. There is also test-
ing for equality/inequality and the operation that assigns an integer to a variable. In all
of these cases, there is the name of the operation, which may be a prefix operator, such as
atoi, or an infix operator, such as +. Whether an operation is defined in the language or
in a library, its name, possible arguments and results must be specified.

In addition to knowing all of the facts about the operations on a data type, we
might also want to know about how the objects of the data type are represented. For
example on most computers a char is represented as a bit string occupying 1 byte of
memory, whereas an int might occupy 2 or possibly 4 bytes of memory. If 2 eight-bit
bytes are used, then INT_MAX is 2'5 -1 = 32,767.

Knowing the representation of the objects of a data type can be useful and
dangerous. By knowing the representation we can often write algorithms that make use
of it. However, if we ever want to change the representation of these objects, we also
must change the routines that make use of it. It has been observed by many software
designers that hiding the representation of objects of a data type from its users is a good
design strategy. In that case, the user is constrained to manipulate the objects solely
through the functions that are provided. The designer may still alter the representation
as long as the new implementations of the operations do not change the user interface.
This means that users will not have to recode their algorithms.

Definition: An abstract data type (ADT) is a data type that is organized in such a way
that the specification of the objects and the specification of the operations on the objects
is separated from the representation of the objects and the implementation of the opera-
tions. O

Some programming languages provide explicit mechanisms to support the distinction
between specification and implementation. For example, Ada has a concept called a
package, and C++ has a concept called a class. Both of these assist the programmer in
implementing abstract data types. Although C does not have an explicit mechanism for
implementing ADTs, it is still possible and desirable to design your data types using the
same notion,

How does the specification of the operations of an ADT differ from the implemen-
tation of the operations? The specification consists of the names of every function, the
type of its arguments, and the type of its result. There should also be a description of
what the function does, but without appealing to internal representation or implementa-
tion details. This requirement is quite important, and it implies that an abstract data type
is implementation-independent. Furthermore, it is possible to classify the functions of a
data type into several categories:

(1) Creator/constructor: These functions create a new instance of the designated
type.

(2) Transformers: These functions also create an instance of the designated type,
generally by using one or more other instances. The difference between

constructors and transformers will become more clear with some examples.

(3) Observers/reporters: These functions provide information about an instance of
the type, but they do not change the instance.

Typically, an ADT definition will include at least one function from each of these three
categories.

Throughout this text, we will emphasize the distinction between specification and
implementation. In order to help us do this, we will typically begin with an ADT
definition of the object that we intend to study. This will permit the reader to grasp the
essential elements of the object, without having the discussion complicated by the
representation of the objects or by the actual implementation of the operations. Once the
ADT definition is fully explained we will move on to discussions of representation and
implementation. These are quite important in the stady of data structures. In order to
help us accomplish this goal, we introduce a notation for expressing an ADT,

Example 1.5 [Abstract data type NaturalNumberl: As this is the first example of an
ADT, we will spend some time explaining the notation. ADT 1.1 contains the ADT
definition of NaturalNumber.

ADT NaturalNumber is
; objects: an ordered subrange of the integers starting at zero and ending at the
maximum integer (INT-MAX) on the computer
functions:
for all x, y € NaturalNumber, TRUE, FALSE € Boolean
and where +, —, <, and == are the usual integer operations

NaturalNumber Zero() n= 0

Boolean IsZero(x) = if (x) return FALSE

else return TRUE

if (x == y) return TRUE
else return FALSE

if (x == INT-MAX) return x
else return x + 1 ‘

if (x+y) <= INT_MAX) return x + %
else retarn INT_MAX

if (x < y) return 0

else retarn x —y

Boolean Equal(x, v)

-NarturalNumber Successor(x)

NaturalNumber Add(x, v)

NaturalNumber Subtract(x, y)

end NaturalNumber

ADT 1.1: Abstract data type NaturalNumber

Data Abstraction 21

The ADT definition begins with the name of the ADT. There are two main sec-
tions in the definition: the objects and the functions. The objects are defined in terms of
the integers, but we make no explicit reference to their representation. The function
definitions are a bit more complicated. First, the definitions use the symbols x and y to
denote two elements of the data type NaturalNumber, while TRUE and FALSE are ele-
ments of the data type Boolean. In addition, the definition makes use of functions that
are defined on the set of integers. namely, plus, minus, equals, and less than. This is an
indication that in order to define one data type, we may need to use operations from
another data type. For each function, we place the result type to the left of the function
name and a definition of the function to the right. The symbols "::=" should be read as
"is defined as."

The first function, Zero, has no arguments and returns the natural number zero.
This is a constructor function. The function Successor(x) returns the next natural
number in sequence. This is an example of a transformer function. Notice that if there is
no next number in sequence, that is, if the value of x is already INT_MAX, then we
define the action of Successor to return INT_MAX. Some programmers might prefer that
in such a case Successor return an error flag. This is also perfectly permissible. Other
transformer functions are Add and Subtract. They might also return an error condition,
although here we decided to return an element of the set NaturalNumber, O

ADT 1.1 shows you the general form that all ADT definitions will follow. How-
ever, in most of our further examples, the function definitions will not be so close to C
functions. In fact, the nature of an ADT argues that we avoid implementation details.
Therefore, we will usually use a form of structured English to explain the meaning of the
functions. Often, there will be a discrepency even between the number of parameters
used in the ADT definition of a function and its C implementation. To avoid confusicn
between the ADT definition of a function and its C implementation, ADT names begin
with an upper case letter while C names begin with a lower case letter.

EXERCISES
For each of these exercises, provide a definition of the abstract data type using the form
illustrated in ADT 1.1. _ .
I. Add the following operations to the NaturalNumber ADT: Predecessor, IsGreater,
Multiply, Divide.
2. Create an ADT, Set. Use the standard mathematics definition and include the fol-
lowing operations: Create, Insert, Remove, Isin, Union, Intersection, Difference.

3. Create an ADT, Bag. In mathematics a bag is similar to a ser except that a bag may
contain duplicate elements. The minimal operations should include: Create,
Insert, Remove, and Isin.

4. Create an ADT, Boolean. The minimal operations are And, Or, Nor, Xor (Exclusive
or), Equivalent, and Implies.

1.5 PERFORMANCE ANALYSIS

One of the goals of this book is to develop your skills for making evaluative judgments
about programs. There are many criteria upon which we can judge a program, including:

(1} Does the program meet the original specifications of the task?
(2) Does it work correctly?

(3) Does the program contain documentation that shows how to use it and how it
works?

(4) Does the program effectively use functions to create logical units?
(5) Isthe program’s code readable?

Although the above criteria are vitally important, particularly in the development of
large systems, it is difficult to explain how to achieve them. The criteria are associated
with the development of a good programming style and this takes experience and prac-
tice, We hope that the examples used throughout this text will help you improve your
programming style. However, we also can judge a program on more concrete criteria,
and so we add two more criteria to our list.

(6) Does the program efficiently use primary and secondary storage?
(7) Isthe program’s running time acceptable for the task?

These criteria focus on performance evaluation, which we can loosely divide into
two distinct fields. The first field focuses on obtaining estimates of time and space that
are machine independent. We call this ficld performance analysis, but its subject matter
is the heart of an important branch of computer science known as complexity theory.
The second field, which we call performance measurement, obtains machine-dependent
running times. These times are used to identify inefficient code segments. In this section
we discuss performance analysis, and in the next we discuss performance measurement.
We begin our discussion with definitions of the space and time complexity of a program.

Definition: The space complexity of a program is the amount of memory that it needs to
run to completion. The time complexity of a program is the amount of computer time

that it needs to run to completion. O

1.51 Space Complexity

The space needed by a program is the sum of the following components:

Performance Analysis 23

(1) Fixed space requirements: This component refers to space requirements that do not
depend on the number and size of the program’s inputs and outputs. The fixed require-
ments include the instruction space (space needed to store the code), space for simple
variables, fixed-size structured variables (such as struets), and constants.

(2) Variable space requirements: This component consists of the space needed by
structured variables whose size depends on the particular instance, /, of the problem
being solved. It also includes the additional space required when a function uses recur-
sion. The variable space requirement of a program P working on an instance { is denoted
Sp(I). Sp(I) is usuvally given as a function of some characteristics of the instance I.
Commonly used characteristics include the number, size, and values of the inputs and
outputs associated with 7. For example, if our input is an array containing n numbers
then # is an instance characteristic. If n is the only instance charcteristic we wish to use
when computing Sp(1), we will use Sp(n) to represent Sp(7).
We can express the total space requirement S (P) of any program as:

S(Py=c+Sp(l)

where ¢ is a constant representing the fixed space requirements. When analyzing the
space complexity of a program we are usually concerned with only the vanable space
requirements. This is particularly true when we want to compare the space complexity
of several programs. Let us look at a few examples.

Example 1.6: We have a function, abe (Program 1.10), which accepts three simple vari-
ables as input and returns a simple value as output. According to the classification
given, this function has only fixed space requirements, Therefore, S,;.{(/})=0.0

float abd(float a, fleat b, float <)

{
return a+b+b*c+ (a+b—c}/(a+b)+4.00;

1

Program 1.10: Simple arithmetic function

Example 1.7: We want to add a list of numbers (Program 1.11). Although the output is a
simple value, the input includes an array. Therefore, the variable space requirement
depends on how the array is passed into the function, Programming languages like Pas-
cal may pass arrays by value. This means that the entire array is copied into temporary
storage before the function is executed. In these languages the variable space require-
ment for this program is 8, (/) = §,,(n) = n, where n is the size of the array. C passes

all parameters by value. When an array is passed as an argument to a function, C inter-
prets it as passing the address of the first element of the array. C does not copy the array.
Therefore, §,,,(n)=0.0

fleat sum({float list[], int n}
{
fleat tempsum = 0;
int'i;
for (i = 0; i < n; i++)
tempsum += list[i];
return tempsum;

}

Program 1,11: Iterative function for summing a list of numbers

Example 1.8: Program 1.12 also adds a list of numbers, but this time the summation is
handled recursively. -This means that the compiler must save the parameters, the local
variables, and the return address for each recursive call.

float rsum(float list[], int n)

{
if (n) return rsum{list,n-1) + list[n-1];
return 0;

}

Program 1.12: Recursive function for summing a list of numbers

In this example, the space needed for one recursive call is the number of bytes
required for the two parameters and the return address. We can use the sizeof function to
find the number of bytes required by each type. Figure 1.1 shows the number of bytes
required for one recursive call under the assumption that an integer and a pointer each
-require 4 bytes.

If the array has n = MAX..SIZE numbers, the total variable space needed for the
recursive version is S, (MAX_SIZE) = 12+MAX_SIZE. If MAX-SIZE = 1000, the
variable space needed by the recursive version is 12+1000 = 12,000 bytes. The iterative
version has no variable space requirement. As you can see, the recursive version has a
far greater overhead than its iterative counterpart. O

Performance Analysis 25

Type Name | Number of bytes
parameter: array pointer list(] 4

parameter: integer n 4

return address: (used internally) 4

TOTAL per recursive call 12 T

Figure 1.1: Space needed for one recursive call of Program 1,12

EXERCISES

1. Determine the space complexity of the iterative and recursive factorial functions
created in Exercise 7, Section 1.3.

2. Determine the space complexity of the iterative and recursive Fibonacci number
functions created in Exercise 8, Section 1.3.

3. Determine the space complexity of the iterative and recursive binomial coefficient
functions created in Exercise 9, Section 1.3,

4. Determine the space complexity of the function created in Exercise 5, Section 1.3
(pigeon hole principle). '

5. Determine the space complexity of the function created in Exercise 12, Section 1.3
(powerset problem).

1.5.2 Time Complexity

The time, T (P), taken by a program, P, is the sum of its compile time and its run (or exe-
cution) time. The compile time is similar to the fixed space component since it does not
depend on the instance characteristics, In addition, once we have verified that the pro-
gram runs correctly, we may run it many times without recompilation. Consequently, we
are really concerned only with the program’s execution time, Tp.

Determining T} is not an easy task because it requires a detailed knowledge of the
compiler’s attributes. That is, we must know how the compiler translates our source pro-
gram into object code. For example, suppose we have a simple program that adds and
subtracts numbers. Letting n denote the instance characteristic, we-might express Tp(n)
as:

Tp(n) = c, ADD(n) + ¢,SUB(n) + c,LDA (n) + ¢, STA (n)

where c,, ¢;, ¢;, ¢ are constants that refer to the time needed to perform each operation,
and ADD, SUB, LDA, STA are the number of additions, subtractions, loads, and stores

that are performed when the program is run with instance characteristic 7.

Obtaining such a detailed estimate of running time is rarely worth the effort. If we
must know the running time, the best approach is to use the system clock to time the pro-
gram. We will do this later in the chapter. Alternately, we could count the number of
operations the program performs. This gives us a machine-independent estimate, but we
must know how to divide the program into distinct steps.

Definition: A program step is a syntactically or semantically meaningful program seg-
ment whose execution time is independent of the instance characteristics. O

Note that the amount of computing represented by one program step may be
different from that represented by another step. So, for example, we may count a simple
assignment statement of the form a = 2 as one step and also count a more complex state-
ment such as a = 2xb+3%c/d—e +f /g /a /b /c as one step. The only requirement is that the
time required to execute each statement that is counted as one step be independent of the
instance characteristics.

We can determine the number of steps that a program or a function needs to solve
a particular problem instance by creating a global variable, count, which has an initial
value of 0 and then inserting statements that increment count by the number of program
steps required by each executable statement.

Example 1.9 [Iterative summing of a list of numbers]: We want to obtain the step count
for the sum function discussed earlier (Program 1.11). Program 1.13 shows where to
place the count statements. Notice that we only need to worry about the executable
statements, which automatically eliminates the function header, and the second variable
declaration from consideration.

float sum(float 1list([], int n}

{
float tempsum = 0; count++; /* for assignment */

int i;
for (1 = 0; 1 < n; i++) |
count++; /* for the for lcop */

tempsum += list[i]; count++; /* for assignment */
}
count++; /* last execution of for */
count++; /* for return */ return tempsum;

}

Program 1.13: Program 1.11 with count statements

Performance Analysis 27

Since our chief concemn is determining the final count, we can eliminate most of
the program statements from Program 1.13 to obtain a simpler program Program 1.14
that computes the same value for count. This simplification makes it easier to eXxpress
the count arithmetically. Examining Program 1.14, we can see that if count’s initial
value is 0, its final value will be 2 + 3. Thus, each invocation of sum executes a total of
2n + 3 steps, O

float sum{float list[], int n)
{

float tempsum = 0;

int i;

for (1 = 0; 1 < n; i++)

count += 2;
count +=3;
return 0;

}

Program 1.14: Simplified version of Program 1.13

Example 1.10 {Recursive summing of a list of numbers]: We want to obtain the step
count for the recursive version of the summing function. Program 1,15 contains the ori-
ginal function (Program 1.12) with the step counts added.

float rsum{(flcat list[], int n)
{
count++; /* for if conditional */
if (n) {
count++; /* for return and rsum invocation */
return rsum(list,n-1) + list([n-1];
}
count++;
return list[0];
}

Program 1.15: Program 1.12 with count statements added

To determine the step count for this function, we first need to figure out the step
count for the boundary condition of n = 0. Looking at Program 1.15, we can see that

when n = 0 only the if conditional and the second return statement are executed. So, the
total step count for n =0 is 2. For n > 0, the if conditional and the first return statement
are executed. So each recursive call with n > 0 adds two to the step count. Since there
are n such function calls and these are followed by one with n = 0, the step count for the
function is 2n + 2. '

Surprisingly, the recursive function actually has a lower step count than its itera-
tive counterpart. However, we must remember that the step count only tells us how
many steps are executed, it does not tell us how much time each step takes. Thus,
although the recursive function has fewer steps, it typically runs more slowly than the
iterative version as its steps, on average, take more time than those of the iterative ver-
sion. O

Example 1.11 [Matrix addition]: We want to determine the step count for a function
that adds two-dimensional arrays (Program 1.16). The arrays a and b are added and the
result is returned in array c¢. All of the arrays are of size rows X cols. Program 1.17
shows the add function with the step counts introduced. As in the previous examples, we
want to express the total count in terms of the size of the inputs, in this case rows and
cols. To make the count easier to decipher, we can combine counts that appear within a
single loop. This operation gives us Program 1.18.

void add(int al[] [MAX—SIZE], int b{] [MAX-SIZE],
int c[] [MAX—-SIZE], int rows, int cols}
{

int i, J;:

for (i = 0; 1 < rows; 1i++)
for (j = 0; 1 < cols; j++)
c(i][3) = alill31 + bli}(3];

}

Program 1.16: Matrix addition

For Program 1.18, we can see that if count is initially 0, it will be 2rows - cols +
2rows + 1 on termination. This analysis suggests that we should interchange the
matrices if the number of rows is significantly larger than the number of columns. O

By physically placing count statements within our functions we can run the func-
tions and obtain precise counts for various instance characteristics. Another way to
obtain step counts is to use a tabular method. To construct a step count table we first
determine the step count for each statement. We call this the steps/execution, or s/e for
short. Next we figure out the number of times that each statement is executed. We call
this the frequency. The frequency of a nonexecutable statement is zero. Multiplying sfe

Performance Analysis 29

void add(int a[] [MAX—SIZE], int b[] [MAX-SIZE],
int ¢[] [MAX-SIZE], int rows, int cols)
{ .
int i, 5;
for (i = 0; 1 < rows; i++) {
count++; /* for i for locp */
for (3 = 0; J < cols; j++) |
count++; /* for j for loop */
cli] (3] = ali)[3} + bli][]]1;
count++; /* for assignment statement */

}

count++; /* last time of j for loop */

}
count++; /* last time of i for loop */

H

Program 1.17: Matrix addition with count statements

void add{int a[] [MAX—SIZE], int b[] [MAX—SIZE],
int c¢[] {MAX.-SIZE], int rows, int cols)
{
int i, 3J;
for (i = 0; 1 < rows; i++) {
for (j = 0; Jj < cols; j++)
count += 2;
count += 2;
H
count++;

}

Program 1.18: Simplification of Program 1.17

by the frequency, gives us the fotal steps for each statement. Summing these totals,
gives us the step count for the entire function. Although this seems like a very compli-
cated process, in fact, it is quite easy. Let us redo our three previous examples using the

tabular approach. :

Example 1.12 [Iterative function to sum a list of rumbers]: Figure 1.2 contains the
step count tabte for Program 1.11. To construct the table, we first entered the
steps/execution for each statement. Next, we figured out the frequency column. The for
loop at line 5 complicated matters slightly. However, since the loop starts at 0 and ter-
minates when i is equal to n, its frequency is n + 1. The body of the loop (line 6) only
executes n times since it is not executed when i = n. We then obtained the total steps for
each statement and the final step count. O

Statement sfe Frequency Total steps
float sum(float list[], intn) | O 0 0
{ 0 0 0
float tempsum = 0; 1 1 1
inti; 0 0 0
for(i=0;i<n;i++) | n+l n+l
tempsum += list{i]; 1 n n
return tempsum; 1 1 1
} 0 0]
Total 2n+3

Figure 1.2: Step count table for Program 1.11

Example 1.13 [Recursive function to sum a list of numbers): Figure 1.3 shows the step
count table for Program 1.13. O

Example 1.14 [Mairix addition]: Figure 1.4 contains the step count table for the matrix
addition function. O

Summary

The time complexity of a program is given by the number of steps taken by the program
to compute the function it was written for. The number of steps is itself a function of the
instance characteristics. While any specific instance may have several characteristics
{e.g., the number of inputs, the number of outputs, the magnitudes of the inputs and out-
puts, etc.), the number of steps is computed as a function of some subset of these. Usu-
ally, we choose those characteristics that are of importance to us. For example, we might
wish to know how the computing {(or run) time (i.e., time complexity) increases as the
number of inputs increase. In this case the number of steps will be computed as a func-
tion of the number of inputs alone. For a different program, we might be interested in

Performance Analysis 31

Statement s/fe Frequency Total steps
float rsum{float list[], int n) 0 1} 0
{ 0 0 0
if () 1 n+l n+l
return rsum(list,n—1) + listin—1]; | 1 n n
return list{0]; 1 1 1
} 0 0 0
Total 2n+2

Figure 1.3: Step count table for recursive summing function

Statement sfe Frequency Total Steps
void add(int a{][MAX_SIZE] -+) | 0 0 0
{ 0 0 0

inti, j; 0 0 o

for (1=0; i<rows; i++) 1 rows+1 rows+1

for (j = 0; j < cols; j++) 1 rows - (cols+1}y rows - cols + rows
clilfjl = alillj] + blillj]: 1 rows ' cols rows - cols

} 0 o0 0
Total 2rows ' cols + 2rows+1

Figure 1.4: Step count table for matrix addition

determining how the computing time increases as the magnitude of one of the inputs
increases. In this case the number of steps will be computed as a function of the magni-
tude of this input alone. Thus, before the step count of a program can be determined, we
need to know exactly which characteristics of the problem instance are to be used.
These define the variables in the expression for the step count. In the case of sum, we
chose to measure the time complexity as a function of the number, n, of elements being
added. For function add the choice of characteristics was the number of rows and the
number of columns in the matrices being added.

Once the relevant characteristics (n, m, p, g, r, ...) have been selected, we can
define what a step is. A step is any computation unit that is independent of the

characteristics (n, m, p, g, r, ...). Thus, 10 additions can be one step; 100 multiplica-
tions can also be one step; but n additions cannot. Nor can m/2 additions, p +¢4 subtrac-
tions, etc., be counted as one step.

The examples we have looked at so far were sufficiently simple that the time com-
plexities were nice functions of fairly simple characteristics like the number of elements,
and the number of rows and columns. For many programs, the time complexity is not
dependent solely on the number of inputs or outputs or some other easily specified
characteristic. Consider the function binsearch (Program 1.7). This function searches an
ordered list. A natural parameter with respect to which you might wish to determine the
step count is the number, #, of elements in the list. That is, we would like to know how
the computing time changes as we change the number of elements n. The parameter » is
inadequate. For the same n, the step count varies with the position of the element
searchnum that is being searched for. We can extricate ourselves from the difficulties
resulting from situations when the chosen parameters are not adequate to determine the
step count uniquely by defining three kinds of steps counts: best case, worst case and
average.

The best case step count is the minimum number of steps that can be executed for
the given paramenters. The worst-case step count is the maximum number of steps that
can be executed for the given paramenters. The average step count is the average
number of steps executed on instances with the given parameters.

EXERCISES
1. Redo Exercise 2, Section 1.3 (Horner’s rule for evaluating polynomials), so that
step counts are introduced into the function. Express the total count as an equation.

2. Redo Exercise 3, Section 1.3 (truth tables), so that steps counts are introduced into
the function. Express the total count as an equation.

3. Redo Exercise 4, Section 1.3 so that step counts are introduced into the function.
Express the total count as an equation.

4. (a) Rewrite Program 1.19 so that step counts are introduced into the function.
(b) Simplify the resulting function by eliminating statements.
(c) Determine the value of count when the function ends.
(d) Write the step count table for the function.
5. Repeat Exercise 4 with Program 1.20.
Repeat Exercise 4 with Program 1.21
7. Repeat Exercise 4 with Program 1.22

Performance Analysis 33

void printMatrix(int matrix[] [MAX-SIZE], int rows,
int cols}
{
int i, j;
for (1 = 0; i < rows; 1++) [
for (j = 0; 7 < cols; J++)
printf ("$d", matrix[i] [j]);
printf{"\n");

1

Program 1.19: Printing out a matrix

void mult{int a[) [MAX-SIZE], int b[] [MAX-SIZE],
int ¢{] [MAX_SIZE])
{
int i, j, k;
for (i = 0; i1 < MAX--SIZE; i++)
for (§ = 0; j < MAX—_SIZE; Jj++) {
cl[ilfi] = 0;
for (k = 0; k < MAX_SIZE; k++)
c[il[j} += alillk] * biklI[]];

1

Program 1.20: Matrix multiplication function

1.53 Asymptotic Notation (O, O, ©)

" Our motivation to determine step counts is to be able to compare the time complexities
of two programs that compute the same function and also to predict the growth in run
time as the instance characteristics change.

Determining the exact step count (either worst case or average) of a program can
prove to be an exceedingly difficult task. Expending immense effort to determine the
step count exactly isn’t a very worthwhile endeavor as the notion of a step is itself inex-
act. (Both the instructions x =y and x =y + z + (x/y) + (x*y *7—x/z) count as one step.)
Because of the inexactness of what a step stands for, the exact step count isn’t very

void prod(int al] [MAX SIZE], int b[][MAX_SIZE],
int c[] {MAX_SIZE], int rowsa, int colshb, int colsa)
{

int i, 3, k;

for (1 = 0; i < rowsa; i++)
for {(j = 0; j < colsb; j++) {
cli) (] = 0;

for (k = 0; k < colsa; k++)
cl[i]l[]] += alil[k] * Blk]I[]];

}

Program 1.21: Matrix product function

void transpose(int all] [MAX-SIZE])
{
int i, j, temp;
for (1 = 0; 1 < MAX_SIZE-1; 1i++)
for {j = i+1l; J < MAX-SIZE; j++)
SWAP(al[i11[31, aljllil, temp);
}

Program 1.22: Matrix transposition function

useful for comparative purposes. An exception to this is when the difference in the step
counts of two programs is very large as in 3n+3 versus 100s7+10. We might feel guite
safe in predicting that the program with step count 3n +3 will run in less time than the
one with step count 100x +10. But even in this case, it isn’t necessary to know that the
exact step count is 100 +10. Something like, *‘it’s about 80n, or 85n, or 750, is ade-
quate to arrive at the same conclusion.

For most situations, it is adequate to be able to make a statement like ¢, n? < Tp(n)
< cyn? or To(n,m) = ¢ \n + com where ¢; and c, are nonnegative constants. This is so
because if we have two programs with a complexity of ¢,n? + c,n and ¢3n, respectively,
then we know that the one with complexity c3n will be faster than the one with complex-
ity ¢,n? + c,n for sufficiently large values of n. For small values of n, either program
could be faster (depending on ¢y, ¢;3, and ¢;3). ¢ =1, c; =2, and ¢3 = 100 then cn?
+cn<esnforn<98and cyn® +con>eznforn>98. Ifey = 1,¢, =2, and ¢35 = 1000,

Performance Analysis 35

then ¢ n? + ¢sn < ¢ 3n for n < 998.

No matter what the values of ¢|, ¢;, and c3, there will be an n beyond which the
program with complexity c3n will be faster than the one with complexity cn? + c,n.
This value of n will be called the break even point. If the break even point is O then the
program with complexity csn is always faster (or at least as fast). The exact break even
point cannot be determined analytically. The programs have to be run on a computer in
order to determine the break even point. To know that there is a break even point it is
adequate to know that one program has complexity ¢ n? + c,n and the other cyn for
some constants ¢, ¢z, and c;. There is little advantage in determining the exact values
OfCI,Cz,al'ld Cq.

With the previous discussion as motivation, we introduce some terminology that
will enable us to make meaningful (but inexact) statements about the time and space
complexities of a program. In the remainder of this chapter, the functions f and g are
nonnegative functions.

Definition: [Big ‘‘oh’’] f(n) = O(g (n)) (read as ‘‘f of n is big oh of g of »’"} iff (if and
only if) there exist positive constants ¢ and ng such that f(r) < cg (n) forall n,n 2 ny. O

Example 1.15: 3n+2=0O{n)as3n+2<dnforallnz2. 3n+3=0n)as3n+3<4n
for all n 2 3. 100n + 6 = O(n) as 100n + 6 < 101z for n 2 10. 108? + 4n + 2= O(n?) as
10n% + 4n + 2 < 11n% for n > 5. 1000n2 + 1007 - 6 = O(n?) as 1000n2 + 100r — 6 <
100112 for n > 100. 652" + n? = O(2") as 6%2" + n2 <7+2" forn>4. 3n+3=0(n?) as
In+3<3nforn22. 10n2+4n+2=0n%as 10n?* +4n+2<10n* forn=2. 3n+2
O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > ny. 1082 +
dn+220(n). O

We write O{1) to mean a computing time which is a constant. Ofr) is called
linear, O(n?) is called quadratic, O(n>) is called cubic, and O(2") is called exponential.
If an algorithm takes time O{log n) it is faster, for sufficiently large n, than if it had taken
O(n). Similarly, O(n log n) is better than O(n?) but not as good as O(n). These seven
computing times, O(1), O(log n), O(n), O(n log n), O(n?), O(n’), and O(2") are the
ones we will see most often in this book,

As illustrated by the previous example, the statement f(n) = Of{g(n)) only states
that g (n) is an upper bound on the value of f(n) for all n, n 2 ny. It doesn’t say anything
about how goed this bound is. Notice that # = O(n?), n = O(n?3), n = O(n>), n = O(2"),
etc. In order for the statement f(n) = O(g (n)) to be informative, g (rn) should be as small
a function of n as one can come up with for which f(n) = O(g(n)). So, while we shall
often say 3n + 3 = O(n), we shall almost never say 3z + 3 = O(n?) even though this
latter statement is correct.

From the definition of O, it should be clear that f{n) = O(g (n)) is not the same as

g (n)) =f(n). In fact, it is meaningless to say that O(g (n}) = f(r). The use of the sym-
bol *‘="" is unfortunate as this symbol commonly denotes the ‘‘equals’ relation. Some

of the confusion that results from the use of this symbol (which is standard terminology)
can be avoided by reading the symbol ‘="’ as ‘‘is”" and not as ‘‘equals.”
Theorem 1.2 obtains a very useful result concerning the order of f(n) (i.e., the

g(n)inf(n) = O{g (n))) when f(n) is a polynomial in .

Theorem 1.2: If f(n)= a,n™ +... + an + ag, then f(n) = Xn™).

Proof: f(n)< ¥ | a; | n’
i=0

m
<n"Y | a;|ntm
0

m
<n"Y |a;|.fornz=1
0

So, f(n)=0(n™). O

Definition: [Omega] f(n) = Q(g (n)) (read as “*fof n is omega of g of n"") iff there exist
positive constants ¢ and rg such that f(n) 2 cg(n) forall n,n 2 n,y. O

Example 1.16: 3n + 2 =Q(n) as 3n + 2 2 3n for n 2 1 {actually the inequality holds for
n 2 0 but the definition of £ requires an np>0). 3n+3=Qr)as3n+323nforn=>1.
100n+6=Q(n)as 100n+6=100nforn>1.10n* +4n +2=Q(n*)as 10n% +4n + 2>
n? forn = 1. 6+2" + r? = Q(2") as 62" + n? = 2" for n 2 1. Observe also that 3n + 3 =
Q(1); 101 + 4n + 2 = Q(n); 1012 + 4n + 2 = Q(1); 62" + n? = Qn'P), 6%2" + n? =
Q(n°2); 6x2" + n2 = Qn?); 62" + n? = Q(n); and 6*2" + n? = Q(1). O

As in the case of the “‘big oh’’ notation, there are several functions g {n) for which
Jn) =g (n)). g(n)is only a lower bound on f(n). For the statement f(n}= (g (n}) to
be informative, g (n) should be as large a function of n as possible for which the state-
ment f(n) = Q(g(r)) is true. So, while we shall say that 3n + 3 = Q(n) and that
6+2" + n? = Q(2™), we shall almost never say that 3n + 3 = Q(1) or that 6+2* + n? =
Q(1}) even though both these statements are correct.

Theorem 1.3 is the analogue of Theorem 1.2 for the omega notation.

Theorem 1.3: f f(n)=a,n™ +... +an +ay and a, >0, then f(n)=G(n").
Proof: Left as an exercise. U

Definition: [Theta] f(n) = ©(g (n)) (read as *“f of n is theta of g of n'") iff there exist
positive constants ¢, ¢,, and ny such that ¢, g(n} <f(n)<cagn)forall mnzny. O

Performance Analysis 37

Example 1.17: 3n+2=0(n)as3n+223nforalln>2and3n+2<4nforall n>2, so
c13cra=4andny=2.3n+3=0(n);, 10n? +4n + 2 = On?); 6x2" + n% = ®&(2"); and
10xlog n +4 =0O(log n). 3n+2=O(1); 3n+ 3 #O(n2); 10n2 + 4n + 2 2 On); 10n? +
4n+220(1); 652" + n? £ O(n?), 6%2" + n = On'®); and 6+2" + n2 # B(1). O

The theta notation is more precise than both the “‘big ob> and omega notations,
fin)=0(g (n))iff g (n) is both an upper and lower bound on f(n).

Notice that the coefficients in all of the g (n)’s used in the preceding three exam-
ples has been 1. This is in accordance with practice. We shall almost never find our-
selves saying that 3z + 3 = O(3n), or that 10 = O(100), or that 10r? + 4n + 2 = Q(4n?),
or that 642" + n? = Q(6+2"), or that 62" + n® = ©(4x2"), even though each of these
statements is true.

Theorem 1.4: If f(n) =a,n™ +... +an + agand a,, >0, then f(n} = On™).
Proef: Left as an exercise. O

Let us reexamine the time complexity analyses of the previous section. For func-
tion sum (Program 1.12) we had determined that T, (#) = 2r + 3. So, T,,.(n) = O(n).
T um(n) =2n + 2 = O(n) and T, (rows, cols) = 2Zrows.cols + 2rows + 1 = &(rows.cols).

While we might all see that the O, Q, and © notations have been used correctly in
the preceding paragraphs, we are still left with the question: **Of what use are these
notations if one has to first determine the step count exactly?”” The answer to this ques-
tion is that the asymptotic complexity (i.e., the complexity in terms of O, Q, and ®) can
be determined quite easily without determining the exact step count. This is usually
done by first determining the asymptotic complexity of each statement (or group of state-
ments) in the program and then adding up these complexities.

Example 1.18 [Complexity of matrix addition): Using a tabular approach, we construct
the table of Figure 1.5. This is quite similar to Figure 1.4. However, instead of putting
in exact step counts, we put in asymptotic ones. For nonexecutable statements, we enter
a step count of 0. Constructing a table such as the one in Figure 1.5 is actually easier
than constructing the one is Figure 1.4, For example, it is harder to obtain the exact step
count of rows.(cols +1} for line 5 than it is to see that line 5 has an asymptotic complex-
ity that is ®(rows.cols). To obtain the asymptotic complexity of the function, we can add
the asymptotic complexities of the individual program lines. Alternately, since the
number of lines is a constant (i.c., is independent of the instance characteristics), we may
simply take the maximum of the line complexities. Using either approach, we obtain
©(rows.cols) as the asymptotic complexity, O

Example 1.19 [Binary search]: Let us obtain the time complexity of the binary search
function binsearch (Program 1.7). The instance characte_n'stic we shall use is the number

Statement Asymptotic complexity
void add(int a[][MAX_SIZE] ---) | O
{ 0
int i, j; 0
for (i=(); i<rows; i++) B(rows)
for (j = 0; j < cols; j++) B{rows.cols)
clili} = alil[j) + blill}: A(rows.cols)
} 0
Total O(rows.cols)

Figure 1.5: Time complexity of matrix addition

n of elements in the list. Each iteration of the while loop takes ®&(1} time. We can show
that the while loop is iterated at most [log, (2 +1)] times. Since an asymptotic analysis
is being performed, we don’t need such an accurate count of the worst-case number of
jterations. Each iteration except for the last results in a decrease in the size of the seg-
ment of list that has to be searched by a factor of about 2. That is, the value of right —
left + 1 reduces by a factor of about 2 on each iteration. So, this loop is iterated &(log n)
times in the worst case. As each iteration takes ®&(1) time, the overall worst-case com-
plexity of binsearch is ©(log n). Notice that the best case complexity is @(1) as in the
best case searchnum is found in the first iteration of the while loop. O

Example 1.20 [Permutations]: Consider function perm (Program 1.9). When i = n, the
time taken is ®(n). When i < n, the else clause is entered. The for loop of this clause is
entered n ~i + 1 times, Each iteration of this loop takes ®(n + T,,,(i + 1, n)) time. So,
Tperm(i, 1) = O((n =i + 1)(n + Tpopm (i + 1, n))) when i <n. Since, Tpep(i +1, 1}, is at
least n when i +1 < n, we get T, 7) = O(n —i + D1 pep(i + 1, n)) for i <n. Solv-
ing this recurrence, we obtain Ty, (1,n)=0On (n!)),n21. O

Example 121 [Magic square]: As our last example of complexity analysis, we use a
problem from recreational mathematics, the creation of a magic square. A magic square
is an n X n matrix of the integers from 1 to n? such that the sum of each row and column
and the two major diagonals is the same. Figure 1.6 shows a magic square for the case n
= 5. In this example, the common sum is 65.

Coxeter has given the following rule for generating a magic square when n is odd:

Put a one in the middle box of the top row. Go up and left assigning numbers in
increasing order to empty boxes. If your move causes you to jump off the square (that is,

Performance Analysis 39

15| 8124117
16|14 7 | 523
22120136 | 4

Figure 1.6: Magic square forn =5

you go beyond the square’s boundaries), figure out where you would be if you landed on
a box on the opposite side of the square. Continue with this box. If a box is occupied, go
down instead of up and continue.

We created Figure 1.6 using Coxeter’s rule. Program 1.23 contains the coded
algorithm. Let n denote the size of the magic square (i.e., the value of the variable size
in Program 1.23. The if statements that check for errors in the value of n take ©(1) time.
The two nested for loops have a complexity ®(n?). Each iteration of the next for loop
takes ©(1) time. This loop is iterated @(n”) time. So, its complexity is @(n?). The
nested for loops that output the magic square also take @(n?) time. So, the asymptosic
complexity of Program 1.23 is ®(n?). O

#include <stdic.h>
#define MAX-SIZE 15 /* maximum size of square */
vold main(void}
{/* construct a magic square, iteratively */
int square[MAX.-SIZE] [MAX_SIZE];

int i, j, row, column; /* indexes */
int count; /* counter */
int size; /* square size */

printf("Enter the size of the square: ");

scanf ("%d", é&size);

/* check for input errors */

if (size < 1 || size > MAX SIZE + 1} {
fprintf (stderr, "Error! Size is out of range\n");
exit (EXIT FAILURE):

}

}

if (!l(size % 2)}) {
fprintf (stderr, "Error! 8ize is even\n");
exit (EXIT_FAILURE) ;

i

for (1 = 0; 1 < size; 1i++)
for (3 = 0; j < size; j++)
square (i} [j]1 = 0;

square[0] [(size-1) / 21 = 1; /* middle of first row */
/* 1 and j are current position */

i = 0;

j = (size - 1) / 2;

for {(count = 2; count <= size * size; count++) |
row = (i-1 < 0) ? (size — 1) : {i — 1); /*up*/

column = (j-1 < 0) ? {(size — 1) : (3 — 1}; /*left*/
if (square[row] [celumn]) /*down*/

i = (++1) % size;

else | /* square is unoccupied */
1 = row;
i = (j~1 < 0) ? (size - 1) : —3;

}

square([i] [§] = count;

}
/* output the magic square */
printf (" Magic Square of size %d : \n\n",size);
for (i = 0; i < size; i++) {

for {(j = 0; J < size; j++)

printf("%5d4d", squarel(i] [j]);

printf ("\n"); ' :
}
printf ("\n\n");

Program 1.23: Magic square program

When we analyze programs in the following chapters, we will normally confine
ourselves to providing an upper bound on the complexity of the program. That is, we will
normally use only the big oh notation. We do this because this is the current trend in
practice. In many of our analyses the theta notation could have been used in place of the
big oh notation as the complexity bound obtained is both an upper and a lower bound for

the program.

Performance Analysis 41

EXERCISES

1. Show that the following statements are correct:
(@ 5n%-6n=0(n?)
(b) n'=0n"
() 2n%+nlogn=0(n?)

@ ¥ i2=0m
i=0

© 3 i=0m

i=0

) n¥ +6:-2"=0n")
® n’+10%4% =00
(hy 6n®/(logn+1)=0(n?)
D n'" 4nlogn=0n'M)

G n*+n+nflogn=0O(n"ogn) forall k> 1.

(k) 10n* + 15n* +100n%2" = O(n?2")
2. Show that the following statements are incorrect;
(@ 10n? +9=0(n)
(b) n’logn=0(n?)
©) n’/logn=0n?H
(d n32" +6n%3" = O(n?2")
(e 3=002"
Prove Theorem 1.3.
Prove Theorem 1.4.
Determine the worst-case complexity of Program 1,19,
Determine the worst-case complexity of Program 1.22.

NS, e W

Compare the two functions n? and 20n +4 for various values of n. Determine
when the second function becomes smaller than the first.

8. Write an equivalent recursive version of the magic square program (Program
1.23).

1.54 Practical Complexities

We have seen that the time complexity of a program is generally some function of the
instance characteristics. This function is very useful in determining how the time
reauirements varv as the instance characteristics change The camnlexity fanction mav

also be used to compare two programs P and @ that perform the same task. Assume that
program P has complexity ©(n) and program O is of complexity ®(n?). We can assert
that program P is faster than program Q for “‘sufficiently large’” n. To see the validity of
this assertion, observe that the actual computing time of P is bounded from above by cn
for some constant ¢ and for all n, n 2 n,, while that of Q is bounded from below by dn’
for some constant d and all n, n > n,. Since cn < dn? for n > c/d, program P is faster
than program Q whenever n = max{n,, n,, c/d}.

You should always be cautiously aware of the presence of the phrase ‘‘sufficiently
large” in the assertion of the preceding discussion. When deciding which of the two
programs to use, we must know whether the n we are dealing with is, in fact,
“‘sufficiently large.”” If program P actually runs in 10%n milliseconds while program Q
runs in 72 milliseconds and if we always have n < 10%, then, other factors being equal,
program {2 is the one to use, other factors being equal.

To get a feel for how the various functions grow with n, you are advised to study
Figures 1.7 and 1.8 very closely. As you can see, the function 2" grows very rapidly
with n. In fact, if a program needs 2" steps for execution, then when n = 40, the number
of steps needed is approximately 1.1%10'2, On a computer performing 1 billion steps per
second, this would require about 18.3 minutes. If n = 50, the same program would run
for about 13 days on this computer. When » = 60, about 310.56 years will be required to
execute the program and when n = 100, about 4%10'* years will be needed. So, we may
conclude that the utility of programs with exponential complexity is limited to small »
(typically r <40).

logn n nlogn n? n? 2"

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 32 160 1024 32,768 4,294,967,296

Figure 1.7: Function values

Programs that have a complexity that is a polynomial of high degree are also of
limited utility. For example, if a program needs n'? steps, then using our 1 billion steps
per second computer we will need 10 seconds when n = 10; 3,171 years when n = 100;
and 3.17%10' years when n = 1000. If the program’s complexity had been n> steps
instead, then we would need 1 second when n = 1000; 110.67 minutes when 7 = 10,000;
and 11.57 days when n = 100,000.

Performance Analysis 43

2" n?

6() N f
50+
40—

nlogn

8]
30 -
f
20 —
n

10 — M@

logn

- Fa el 3]

0 A Y T N R
B_T2345673910

Figure 1.8 Plot of function values

Figure 1.9 gives the time needed by a 1 billion instructions per second computer 10
execute a program of complexity f(n) instructions. You should note that currently only
the fastest computers can execute about 1 billion instructions per second. From a practi-
cal standpoint, it is evident that for reasonably large n (say n > 100), only programs of
small complexity (such as n, nlogn, n%, n*) are feasible. Further, this is the case even if
one could build a computer capable of executing 10’2 instructions per second. In this
case, the computing times of Figure 1.9 would decrease by a factor of 1000. Now, when
n = 100 it would take 3.17 years to execute n'? instructions, and 410! years to execute
2" instructions.

fn) ,
n n | nlog,n n? n? nt n'0 pi
10 01 ps 03 us s 1ps 10 us 10s 1 ps
20 02 09 s s 8 u. 160 s . 284h I ms
30 03p BT 9p 27 810 6.83d Is
40 04 s 21 pus 1.6 us 64 us 2.56 ms 121d, I8 m
50 || 05ps 28 ps 2.5us 125 ps 6.25 ms 3y | 13d
100 10 ps 66 ps 10 us 1 ms 100 ms 317y 4%10" y
10? 1ps 9.96 us 1 ms s 16.67 m 307107 y 325107 y
104 10 ps 130ps | 100ms | 16.67 m 115.7d 1175102 y
10% 100 us 1.66 ms 10s 11.57d 3Ty 317%108 y
108 Tms | 1992 ms | 1667 m 3Ny 37107 y 2710 y

ps = microsecond = 1079 seconds; ms = milliseconds = 10~} seconds
$ = seconds; m = minutes; h = hours; d = days; y = years

Figure 1.9: Times on a 1-billion-steps-per-second computer

1.6 PERFORMANCE MEASUREMENT

1.6.1 Clocking

Although performance analysis gives us a powerful tool for assessing an algorithm’s
space and time complexity, at some point we also must consider how the algorithm exe-
cutes on our machine. This consideration moves us from the realm of analysis to that of
measurement. We will concentrate our discussion on measuring time.

The functions we need to time events are part of C’s standard library, and are
accessed through the statement: #include <time.h>. There are actually two different
methods for timing events in C. Figure 1.10 shows the major differences between these
two methods.

Method 1 uses clock to time events. This function gives the amount of processor
time that has elapsed since the program began running. To time an event we use clock
twice, once at the start of the event and once at the end. The time is returned as a built-in
type, clock_t. The total time required by an event is its start time subtracted from its
stop time. Since this result could be any legitimate numeric type, we type cast it to dou-
ble. In addition, since this result is measured as internal processor time, we must divide
it by the number of clock ticks per second to obtain the result in seconds. In ANSI C, the
ticks per second is held in the built-in constant, CLOCKS_PER_SEC. We found that

Performance Measurement 45

Method 1 Method 2
.| Start timing start = clock(); start = time(NULL),
Stop timing stop = clock(); stop = time(NULL);
Type returned clock -t time -t
Result in seconds | duration = duration =
((double) (stop—start)) / | (double} difftime(stop,start);
CLOCKS-PER_SEC;

Figure 1.10: Event timing in C

this method was far more accurate on our machine. However, the second method does
not require a knowledge of the ticks per second, which is why we also present it here.

Method 2 uses time. This function returns the time, measured in seconds, as the
built-in type fime—t. Unlike clock, time has one parameter, which specifies a location to
hold the time. Since we do not want to keep the time, we pass in a NULL value for this
parameter. As was true of Method 1, we use time at the start and the end of the event we
want to time. We then pass these two times into diffiime, which returns the difference
between two times measured in seconds. Since the type of this result is time -1, we type
cast it to double before printing it out.

Example 1.22 [Worst-case performance of selection sort]: The worst case for selection
sort occurs when the elements are in reverse order. That is, we want to sort into ascend-
ing order an array that is currently in descending order. To conduct our timing tests, we
varied the size of the array from 0, 10, 20, -+, 90, 100, 200, --- , 1000. Program
1.24 contains the code we used to conduct the timing tests. (The code for the sort func-
tion is given in Program 1.4 and for the purposes of Program 1.24 is assumed to be in a
file named selectionSort.h).

To conduct the timing tests, we used a for loop to control the size of the array. At
each iteration, a new reverse ordered array of n numbers was created. We called clock
immediately before we invoked sort and immediately after it returned. Surprisingly, the
duration output for each n was 0! What went wrong? Although our timing program (Pro-
gram 1.24) is logically correct, it fails to measure run times accurately because the
events we are trying to time are too short! Since there is a measurement error of 1] tick,
Program 1.24 returns accurate results only when the sort time is much more than 1 tick.
Program 1.25 is a more accurate timing program for selection sort, In this program, for
each n, we do the sort as many times as needed to bring the total time up to 1 second
(1000 ticks). This program has some inaccuracies of its own, For example, the reported
time includes the time to initialize the array that is to be sorted. However, this

#inciude <stdio.h>
#include <time.h>
#inciude "selectionSort.h"
#define MAX_SIZE 1001
void main{void}
{
int i, n, step = 10;
int a[MAX_SIZE];
double duration;
q}ock_t start;

/* times for n = 0, 10, ..., 100, 200, ..., 1000 */
printf (" n time\n");

for (n = 0; n <= 1000; n += step)

{(/* get time for size n */

/* initialize with worst-case data */
for (i = 0; i < n; i++)
ali] = n - 1i;

start = clock(};

sort{a, nj);

duration = ((double) (clock() - start))
/ CLOCKS_PER_SEC;

printf("%ed $fA\n", n, duration);

if (p == 100} step = 100;

]

Program 1.24: First timing program for selection sort

initialization time is small compared to the actual sort time (O(n) vs O(n?)). In case, the
initialization time is a concern, we may measure the initialization time using a separate
experiment and subtract this from the time reported by Program 1.24.

The results from Program 1.24 are displayed in Figures 1.11 and 1.12. The curve
of Figure 1.12 resembles the n* curve displayed in Figure 1.8. This agrees with our
analysis of selection sort. O

Performance Measurement 47

#include <stdio.h>
finclude <time.h>
#include "selectionSort.h®
#define MAX_SIZE 1001

void main{void)

{

}

int i, n, step = 10;
int a{MAX_SIZE];
double duration;

/* times for n = 0, 10, ..., 100, 200, ..., 1000 =*/
printf (" n repetitions time\n");
for (n = 0; n <= 1000; n += step)

{

/* get time for size n */
long repetitions = 0;
clock_t start = clock({ };
do

{

repetitions++;

/* initialize with worst-case data */
for (1 = 0; i < n; i++)
alfil] = n - i;

sort{a, n});
} while (clock(} - start < 1000);
/* repeat until enocugh time has elapsed */

(clock{} - start))

/ CLOCKS_PER_SEC;

duration /= repetitions;

printf("%$6d %9d $f\n", n, repetitions, duration};
if (n == 100) step = 100;

duration = ((double)

Program 1.25: More accurate timing program for selection sort

n repetitions time

0 | 8690714 | 0.000000
10 | 2370915 | 0.000000
20 604948 | 0.000002
30 329505 | 0.000003
40 205605 | 0.000005
50 145353 | 0.000007
60 110206 | 0.000009

70 85037 | 0.000012
80 65751 | 0.000015
90 54012 | 0.000019
100 44058 | 0.000023
200 12582 | 0.000079
300 5780 | 0.000173
400 3344 | 0.000299
500 2096 | 0.000477
600 1516 | 0.000660
700 1106 | 0.000904
800 852 | 0.001174
900 681 | 0.001468
1000 550 | 0.001818

Figure 1.11: Worst-case performance of selection sort (seconds)

1.6.2 Generating Test Data

Generating a data set that results in the worst-case performance of a program isn’t
always easy. In some cases, it is necessary to use a computer program to generate the
worst-case data. In other cases, even this is very difficult. In these cases, another
approach to estimating worst-case performance is taken. For each set of values of the
instance characteristics of interest, we generate a suitably large number of random test
data. ‘The run times for each of these test data are obtained. The maximum of these.
times is used as an estimate of the worst-case time for this set of values of the instance
characteristics.

To measure average case times, it is usually not possible to average over all

Performance Measurement 49

2000 —

1500 |-

1000

time

500 -

|
500 R 1000
n o — = '

Time axis in microseconds

Figure 1.12: Graph of worst-case performance of selection sort

possible instances of a given characteristic. While it is possible to do this for sequential
and binary search, it is not possible for a sort program. If we assume that all keys are
distinct, then for any given n, n! different permutations need to be used to obtain the
average time.

Obtaining average case data is usually much harder than obtaining worst-case
data. So, we often adopt the strategy outlined above and simply obtain an estimate of the
average time.

Whether we are estimating worst-case or average time using random data, the

number of instances that we can try is generally much smaller than the total number of
such instances. Hence, it is desirable to analyze the algorithm being tested to determine
classes of data that should be generated for the experiment. This is a very algorithm
specific task and we shall not go into it here.

EXERCISES

Each of the following exercises requires you to create a timing program. You must pick
arrays of appropriate sizes and use the proper timing construct. Present you results in
table and graph form, and summarize your findings.

1. Repeat the experiment of Example 1.22. This time make sure that all measured
times have an accuracy of at least 10%. Times are to be obtained for the same
values of n as in the example. Plot the measured times as a function of n.

2. Compare the worst-case performance of the iterative (Program 1.11) and recursive
{Program 1.12) list summing functions.

3. Compare the worst-case performance of the iterative (Program 1.7) and recursive
(Program 1.8) binary search functions.

4. (a) ‘Translate the iterative version of sequential search (Program 1.26) into an
equivalent recursive function.

(b) Analyze the worst-case complexity of your function.

(¢) Measure the worst-case performance of the recursive sequential search
function and compare with the results we provided for the iterative version.

5. Measure the worst-case performance of add (Program 1.16).

Measure the worst-case performance of mult (Program 1.20).

1.7 SELECTED READINGS AND REFERENCES

A good introduction to programming in C can be found in the text C: An advanced intro-
duction by Narain Gehani, Silicon Press, NJ, 1995. Testing computer sofiware, 2nd Edi-
tion, by C. Kaner, J. Falk, and H. Nguyen, John Wiley, New York, NY, 1999 has a more
thorough treatment of software testing and debugging techniques.

The following books provide asymptotic analyses for several programs: Hand-
book of data structures and applications edited by D. Mchta and S. Sahni, Chapman &
Hall/CRC, Boca Raton, 2005, Fundamenials of Computer Algorithms by E. Horowitz, S.
Sahni, and S. Rajasekaran, W. H. Freeman and Co., New York, NY, 1998, Introduction to
Algorithms, Second Edition, by T. Cormen, C. Leiserson, and R. Rivest, McGraw-Hill,
New York, NY, 2002; and Compared to What: An Introduction to the Analysis of Algo-
rithms by G. Rawlins, W. H. Freeman and Co., NY, 1992,

